Introduction to R
a brief overview

Kevin Keenan
kkeenan02@qub.ac.uk

QUB

September 16, 2013

Kevin Keenan (QUB) SSCB: R101 September 16, 2013

1/ 54

mailto:kkeenana02@qub.ac.uk

"Education is not the filling of a pale, but the

Kevin Keenan (QUB)

lighting of a fire.”

W.B. Yeats
(1865-1939)

SSCB: R101 September 16, 2013 2 /54

Session structure =

o Lecture: 1hr

What is R

What can you do in R

R as a programming language
R as a statistical package

e Computer practical: 2hrs (of fun)

Installing R & RStudio

Creating an R project

Executing basic commands at the console
Executing commands from an R script
Reading and manipulating data

Plotting features

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 3 /54

What is R?

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 4 /54

What is R?

X

@ R is a programming language and environment for statistical
computing and graphics

o Language
e Highly customisable, flexible and powerful

e R was originally developed at the University of Auckland, NZ
e Open-source version of the S-PLUS statistical programming language

@ Environment

e Supports the integration of many processes into one single
work-flow /pipeline
e Extensible, with thousands of (free) packages available online

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 5/ 54

What is R? @

o It is used widely in academic and commercial sectors

mozilla okeupid Sage Google [EETTS

@ It is one of the most popular analytics softwares used among
professional data analysts

® Brimary Tool Overall Corporate Consultants Academics NGO / Gov't
R R R PR - S - ® £ ® & 3 P B CE -
Frequent Use B8R 3R e85 B8535 8R35R852583585353%
®Occassionaluse R L. N o . I N . S N .
sas 1R W HE . 1. |
18M SPSS Statistics [l I 1. | H . .
Weka [| 1. 1 | B
sTaTisTicA [N I L am |
Rapid Miner |l I e | 1| . - H .
Matlab [N | . L. H . ||

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 6 /54

What is R

@ pros

Fully functional statistical programming environment

Open source

Cross platform: can be used on all popular operating systems
Excellent graphics capabilities

Thousands of (free) extension packages.*

Large online community of users and developers

Analysis frameworks can be saved in reproducible formats.
High level programming language

@ cons

Steep learning curve (Lots of help available)

Minimal GUI capabilities

Analysing large data sets can be troublesome (??bigmemory)
Scripts cannot be compiled into stand alone .exe programs
Interpreted language (slow compared to compiled C++ etc.)
Thousands of (free) extension packages.*

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 7/ 54

Kevin

Keenan (QUB)

What can you do
in R?

SSCB: R101

September 16, 2013

8/ 54

What can you do in R? =

@ Simple arithmetic

5 %5
[1] 25

@ Advanced calculator
Formula
In(Q; J = j) = —pjlogep; + Y1, % logepjj
Code
In[j] <- (-(p[j1)*log(pljl)) + sum((pli, j1/k)*log(pli, j1))

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 9 /54

What can you do in R =

o Data analysis
e General statistical tests
(t.test, anova, glm, chisq.test, 1m)
e Specialised statistical packages
(abc, BSgenome, cluster, igraph, shapefiles)

o Data Visualisation
e Basic plots

150
100 ¢
50

-50 -
-100
-150

I I I I I I
-2 -1 0 1 2 3

X

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 10 / 54

What R can do for you

@ Data visualisation
e Advanced plots

. ~—t
(2
[2 *
*
. .

Kevin Keenan (QUB)

$
SSCB: R101

September 16, 2013

11/ 54

What R can do for you @

e Having fun
e Read XKCD comic strips

PROGRAMMING
SKILL

> o2 .04 .06 OF O Iz 4 JI6 I8 P 22 24 26

BLOOD ALCOHOL CONCENTRATION (%)

CALLED THE BALLMER PEAK, IT HOWEVER, 1T6 A DELICATE EFFECT HAS THAT
\/AS DISCOVERED BY MICROSOFT REQUIRING CAREFUL CALIBRATION— EVER HAPPENED?
IN THE LATE 805. THE CAUSE YOU CAN'T JUST GIVE A TEAM OF REMEMBER

1S UNKNOWN, BUT SOMEHOW A GAC. CODERS A YEAR'S SUPPLY OF WHISKEY WINDOWS ME? \
BETWEEN 029« AND 0138% CONFERS | | AND TELL THEM TO GET CRACKING, ME?

SUPERHUMAN PROGRAMMING ABILITY.

I KNEWIT!

- sl A

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 12 / 54

What can you do in R 2

@ Designing web applications

Stocks app
Global Biodiversity Facility
Price trajectories
Gene Networks
Finance Showreel

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 13 / 54

http://glimmer.rstudio.com/winston/stocks/
http://glimmer.rstudio.com/ropensci/rgbif2/
http://glimmer.rstudio.com/timelyportfolio/d3-shiny-cpi/
http://glimmer.rstudio.com/qbrc/grn/
http://glimmer.rstudio.com/timelyportfolio/shiny-d3-showreel/

Kevin

R as a programming
language

Keenan (QUB) SSCB: R101 September 16, 2013

14 / 54

Choosing an IDE

@ At its most fundamental level, R can be used with only a text editor
and a command prompt/terminal

kevin@icefish: ~
B Boe - B | & | & v - kevin@icefish:~$ R

FakeScriptR x R version 3.6.1 (2013-05-16) -- "Good Sport”

- copyright (C) 2013 The R Foundation for Statistical Computing
B X86_64-pc-1inux-gnu (64-bit)

3 ,

4

5

Setud("-/R") software and comes with ABSOLUTELY NO WARRANTY.

s e welcome to redistribute it under certain conditions.
read a data file Type 'license()' or 'L " for distribution details.

7 myData <- read. table(*myfile. txt", header = TRUE) ype e o e e L Lt o L L

8

904 Find ¢ s of . ta Natural language support but running in an English locale
10 data_means <- colMeans(nyData)

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
"citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
‘help.start()' for an HTML browser interface to help.

Type 'q()' to quit R.

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 15 / 54

Choosing an IDE

@ More integrated options are available, the most comprehensive being

RStudio

) seson Fnaamn orkspace | Mitory Gt

Fles | pats padages Help
Qi NewFolder O Daete [/ Rename

wLdth=100mm1 (basic_

s
5 mydata_missingpng
mydata_pising it
)yt missing-
fhook banner
©) resgabie il

togo 3508

populartyong
Sesion 1{fnallodt
©) Sesson Finsl) o

©) s5c Notesnd

denos, “hela(S5CB presentationlog

) sscBpresenationnav

) SSCB presentation e

©) sscBpresentatonow
sscB presentaionsm

) sscBpresenationsynciexsz

) sscapresentationtex

3 sscBpresenationtoc

Kevin Keenan (QUB) SSCB: R101

1041000 double matrix

file help_files with_topic(1)

B 10001

pgnane utilst

tenp /tmp IREMpQELTVF /read. tableb fd18880527
objsize(...)

sizeAll(...)

5 SSCB.presentation concordancetex 546 bytes

September 16, 2013

16 / 54

The working directory @

@ The working directory is the directory level at which R will evaluate
any calls to read or write data

o If a file of interest in present in the working directory, this file can be
accessed by simply passing its name to a given function

o If the working directory is not set, either an absolute path, or a path
relative to the current working directory must be given

set the working directory
setwd ("~ /R_stuff")

get the current working directory
getwd ()

[11 "~/R_stuff"

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 17 / 54

Finding help 2

A

@ R has a built in help system

Standard syntax

help(FUN) # FUN = some function (e.g. 'sum')
fuzzy search

help.search(pattern)

or short-hand syntax
?FUN

??FUN

example

?read.table

read.table help file
@ The web is your friend

| UCLA R resources page | Search engine tailored to R | stackoverflow | Twitter
#rstats | Comprehensive R Archive Network | R bloggers aggrigator site | The R
podcast | The R Journal (peer reviewed) | Quick R | R programming wikibook |

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 18 / 54

./read.table.html
http://www.ats.ucla.edu/stat/r/
http://www.rseek.org/
http://stackoverflow.com/questions/tagged/r
https://twitter.com/
https://twitter.com/
http://cran.r-project.org/
http://www.r-bloggers.com/
http://www.r-podcast.org/r-resources/
http://www.r-podcast.org/r-resources/
http://journal.r-project.org/index.html
http://www.statmethods.net/
http://en.wikibooks.org/wiki/R_Programming

Finding help @

@ Many excellent books

Methods for
Analysis in

N
Machine
Learning

gt ey

% |

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 19 / 54

Basic operations

@ Using R as a simple calculator

The R console is interactive
5+5

[1] 10

@ Using R as a (less) simple calculator

(1 + 1/10%%3)~100

[1] 1.268e+30
o Testing logicals

(1 + 1/10%%3)~100 == 27100

[1] TRUE

Kevin Keenan (QUB) SSCB: R101

September 16, 2013

X

20 / 54

Basic operations

@ Assigning values to variables

[1] TRUE

Using assignment operator '<-' ('=' in other languages)
x <- (1 + 1/10%%3)~100

y <- 27100

X ==

o Common mathematical operators

or *x*
* and /
+ and -
%

hx

hh

O

Kevin Keenan (QUB)

HHEH R

power: 2710 = 1024 = 2%*10

Multiplication and division

Addition and subtraction

Integer division: 10%/%3 = 3

Conformable matrix multiplication: x %*% y
Modulo: 10%%3 = 1

Parentheses: specify operation order

SSCB: R101 September 16, 2013

21/ 54

Basic operations =

@ Common built in mathematical functions

sin(), cos(), tan(), exp(), log(), loglOQ),
sqrt (), sum(), prod(), floor(), ceiling(),
round(), abs(), acos(), atan(), factorial(),

o Examples

find the product of a range of numbers
prod(1,2,3,4,5)

[1] 120
prod(1:5) == factorial(5)

[1] TRUE

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 22 / 54

Data types in R

@ Values in R can be said to have a class or mode

typeof (5.2) # numeric class: double
[1] "double"
typeof ("ABC") # character class: is.character()

[1] "character"

typeof (as.integer(5.2)) # numeric class: integer
[1] "integer"

typeof (TRUE) # Boolean: is.logical()
[1] "logical"

is.na(NA) # Missing data

[1] TRUE

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 23 / 54

Data structures =

e Virtually everything in R is an object/variable
e Facilitates Object-Oriented Programming

e Simple data structure (all vectors with different dimensionality!)

matrix() All elements must be the same mode
vector () All elements must be the same mode
array () All elements must be the same mode

@ Sophisticated data structures (Data analysis and manipulation!)

factor () Special vector for categorical data mode
list() Can have elements of different mode
data.frame() Can have elements of different mode

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 24 | 54

Data structures: Examples

@ Create a vector

x <- c(11, 12, 13, 14, 15) # create a numeric vector
X # print x

[1] 11 12 13 14 15

x <- 11:15 # using colon expansion

@ What about strings?

y <- c("Kevin", "Keenan") # create a character vector
y # print y

[1] "Kevin" '"Keenan"

e What about mixtures? (Beware coercion!!!)

z <- c("Kevin", "Keenan", 26) # create mixed variable
z

[1] "Kevin" "Keenan" "26"

Kevin Keenan (QUB) SSCB: R101 September 16, 2013

X

25 / 54

Data structures: Examples

@ For variables of different mode, we can use a 1ist

z <- list(first = "Kevin", second = "Keenan",
age = 26)

z

$first

[1] "Kevin"

$second

[1] "Keenan"

$age

[1] 26

o Make sure the elements have maintained their modes

is.character (z$first)
[1] TRUE
is.numeric(z$age)

[1] TRUE

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 26 / 54

Data structures: Examples

e A matrix is a vector with two dimensions, while an array is a
matrix with more than two dimensions.

x_vect <- seq(from = 0.1, to = 10, by = 0.1)
length(x_vect)

[11 100

x_mat <- matrix(x_vect, ncol = 10)
x_mat

[,11 [,21 [,3] [,41 [,5] C[,6] [,71 [,8] [,9] [,101

[t,] 0.1 1.1 2.1 3.1 4.1 5.1 6.1 7.1 8.1 9

[2,] 0.2 1.2 2.2 3.2 4.2 5.2 6.2 7.2 8.2 9.2
[3,] 0.3 1.3 2.3 3.3 4.3 5.3 6.3 7.3 8.3 9.3
[4,] 0.4 1.4 2.4 3.4 4.4 54 6.4 7.4 8.4 9.4
[65,] 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5
[6,] 0.6 1.6 2.6 3.6 4.6 5.6 6.6 7.6 8.6 9.6
[7,] 0.7 1.7 2.7 3.7 4.7 5.7 6.7 7.7 8.7 9.7
[8,] 0.8 1.8 2.8 3.8 4.8 5.8 6.8 7.8 8.8 9.8
[9,] 0.9 1.9 2.9 3.9 4.9 5.9 6.9 7.9 8.9 9.9
[t0o,] 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 27 | 54

Indexing/sub-setting

@ Unlike languages such as python or perl, R indexing begins at 1

x[1]

[11 11
x[c(1, 4, 5)]
[1] 11 14 15
x[-3]

[1] 11 12 14 15

x[1] + x[2]
[1] 23

y <- x[-4]
y

[1] 11 12 13 15

Kevin Keenan (QUB)

print the first element of x

print a range of elements

print all but the 3rd element

Add the first and second elements

create a new vector

SSCB: R101

September 16, 2013

X

28 / 54

Indexing/sub-setting R

@ Because a matrix is a vector with two dimensions, each element has
a pair of index 'coordinates’

@ The general index format is as below:

matrix[row, column]

o If we wanted to extract the 5 element of the 3" column, we would
write:

x_mat[5, 3]

[1] 2.5

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 29 / 54

Indexing/sub-setting

X

@ list indexing can be done through brackets ([[1]) or the '$" extract

operator

Create a list for the number of offspring per pet
offspring <- list(dog = c(2, 5, 3, 8), cat = c(12, 6, 7, 4),

snake = c(43, 35, 23, 10))
offspring

$dog
[11 2538

$cat
[1] 12 6 7 4

$snake
[1] 43 35 23 10

offspring$cat == offspring[[2]] # Compare indexing methods

[1] TRUE TRUE TRUE TRUE

Kevin Keenan (QUB) SSCB: R101 September 16, 2013

30 / 54

Why lists?

@ The generality of the definition of a 1ist makes it an extremely
flexible data structure for statistical analyses

e A generic container for other objects (e.g. matrices, vectors,
data.frames)

Create a complex list
myList <- list(x = matrix(c(offspring$dog, offspring$cat,

offspring$snake), ncol = 3),
10,

offspring)
myList$x # print element 'x' of the list

y =
z =

[,1]1 [,2]1 [,3]
[1,] 2 12 43
[2,] 5 6 35
[3,] 3 7 23
[4,] 8 4 10

myListzdog == myList$x[, 1]
[1] TRUE TRUE TRUE TRUE

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 31/ 54

Why lists? R

o Extracting multiple items from a list can be done in two ways
Create a complex list
myList [c("x", "y")] # by name

[,1]1 [,2]1 [,3]
2 12 43

[1,]

[2,] 5 6 35

[3,] 3 7 23

[4,] 8 4 10

$y

[1] 10

myList[1:2] # by index

[,1]1 [,2]1 [,3]
2 12 43

[1,]

[2,] 5 6 35
[3,] 3 7 23
[4,] 8 4 10
$y

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 32 /54

The data.frame: a special list @

@ The data.frame is the most used data structure in R for statistical
analyses

@ It is essentially a list with two dimensions

Create a complex list
myDF <- data.frame(pet = c(rep("dog", 4), rep("cat", 4),
rep("snake", 4)),
offspring = unlist(offspring))

myDF

pet offspring
dogl dog
dog2 dog 5
dog3 dog 3
dog4 dog 8
catl cat 12
cat2 cat 6
cat3 cat 7
catéd cat 4
snakel snake 43
snake2 snake 35
snake3 snake 23
snake4 snake 10

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 33 /54

The data.frame: a special list

@ The pet variable in myDF is a factor
e A special vector for categorical data

is.factor (myDF$pet) # check if pet is a factor

[1] TRUE
levels (myDF$pet) # check the levels (categories) of pet
[1] "Cat" Ildogll Ilsnakell

tapply (myDF$offspring, myDF$pet, FUN = mean)

cat dog snake
7.25 4.50 27.75

Kevin Keenan (QUB) SSCB: R101 September 16, 2013

X

34 / 54

The data.frame: a special list [

o Data frames containing factors make plotting categorical data
simple

plot (myDF, col = rainbow(3)) # boxplot of offspring per pet

o _|
<
o _|
o ™
c
=
o |
Z R
o
o |
- _ —
—
I I

cat dog shake

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 35/ 54

Real data in R

@

@ To read data from a file into R, there are a range of simple functions

read.csv()
read.table()
read.delim()
read.fwf ()
read.DIF()
scan()
readLines ()

HHEH HERHER R

@ The most commonly used function is read.table

A

+ Name
. Steve
> Emily
+ George
- Nicola
s Pierre

Kevin Keenan (QUB)

read a comma seperated file
read a file in table format

read a file with TAB delimited fields

read a fixed width format table
read data interchange format file

C level: foundation for most other read functions

Read individual lines from a file

[B
Height

Weight
1.78
1.56
211
1.65
1.95

SSCB: R101

75.2
120.4
91.3
45.6
86.3

BMI

23.73
49.47
20.51
16.75
22.70

September 16, 2013 36 / 54

Real data in R [=~

@ To read a spreadsheet table, it is generally sensible to convert it to a
text file or .csv file

e This avoids any problems with multi-sheet workbooks and odd text
encoding

my_data <- read.table("mydata.txt", header = TRUE)
print (my_data) # look at the table in R

Name Height Wel ht BMI
1 Steve 1.78 2 23.73
2 Emily 1.56 120 .4 49.47
3 George 2.11 91.3 20.51
4 Nicola 1.65 45.6 16.75
5 Pierre 1.95 86.3 22.70

is.data.frame (my_data)

[1] TRUE

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 37 / 54

Real data in R

@ Some simple manipulations of my_data
str(my_data) # check the structure of my_data

'data.frame': 5 obs. of 4 variables:

$ Name : Factor w/ 5 levels "Emily",'"George",..: 5 1 2 3 4
$ Height: num 1.78 1.56 2.11 1.65 1.95

$ Weight: num 75.2 120.4 91.3 45.6 86.3

$ BMI : num 23.7 49.5 20.5 16.8 22.7

names (my_data) # get variable names

[1] "Name" "Height" "Weight" "BMI"

names (my_data) <- c("nms", "hgt", "wgt", "bmi") # change names
names (my_data)

[1] llmnsll Ilhgtll llwgtll llbmill

mean (my_data$hgt) # get the mean of heights
[1] 1.81
Kevin Keenan (QUB) SSCB: R101

September 16, 2013

[=

38 / 54

Missing data

@ Imagine that we didn’t have any height information for Emily

msng_data <- read.table("mydata_missing.txt",

+ Name
: Steve
> Emily
« George
+ Nicola
- Pierre

print (msng_data)

Name
1 Steve
2 Emily
3 George
4 Nicola
5 Pierre

Height
1.78
-9999.00
2.11
1.65
1.95

Height

-9999

Weiéht BMI
75.2 23.73
120.4 -9999.00
91.3 20.51
45.6 16.75
86.3 22.70

mean (msng_data$Height)

[1] -1998

Kevin Keenan (QUB)

SSCB: R101

75.2
120.4
91.3
45.6
86.3

23.73
-9999
20.51
16.75
22.70

header = TRUE)

R is not treating -9999 as missing

September 16, 2013

[=

39 / 54

Missing data

@ The special value NA is reserved for missing data in R
e We need to replace our missing values (-9999) with NA’s

msng_data[msng_data == -9999] <- NA

print (msng_data)

Name Height Weiéht BMI
.2

1 Steve 1.78 7 23.
2 Emily NA 120.4

3 George 2.11 91.3 20.
4 Nicola 1.65 45.6 16.
5 Pierre 1.95 86.3 22.

mean (msng_data$Height, na.

[1] 1.873

Kevin Keenan (QUB)

73
NA
51
75
70

rm = TRUE)

SSCB: R101

replace missing data

calculate the mean

September 16, 2013

X

40 / 54

User defined functions @

@ User defined functions in R are similar to modules, subroutines or
procedures in other languages
@ They take the general form below:
funName <- function(argl, arg2, ...){
expressionl

expression2

féfurn(output)

}

@ A simple example: calculate the square of a number

Define the function

sqrFun <- function(x){
x_sqr <- x~2
return(x_sqr)

}
sqrFun(10) # test the function
[11 100

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 41 / 54

User defined functions

@ A more advanced function using conditional control flow
e Allow for user defined operation on a vector (e.g. sum or product)

define the new complex function

newFun <- function(data, operation = "sum"){
if (operation == "sum"){
output <- sum(data)
} else if (operation == "product"){
output <- prod(data)
return (output)
newFun(data = offspring$dog, operation = "sum")
[1] 18
newFun(data = offspring$dog, operation = "product")
[11 240
Kevin Keenan (QUB) SSCB: R101 September 16, 2013

[=

42 / 54

User defined functions =

o Test the function

sum_dog <- newFun(data = offspring$dog, operation = "sum")
prod_dog <- newFun(data = offspring$dog, operation = "product")
sum_dog # print sum results

[1] 18

prod_dog # print product results

[11 240

sum_dog == sum(offspring$dog) # compare function sums

[1] TRUE

prod_dog == prod(offspring$dog) # compare function products

[1] TRUE

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 43 / 54

Iterative processes in R @

@ One of the most useful features of a programming language is the
ability to do many things, multiple times, quickly.

@ R allows us to achieve this with the help of 'loops’

@ There are three main loop structures in R.

» for loop
» while loop
» repeat loop

? for®
? while”
? repeat”

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 44 [54

Iterative processes in R @

The for loop

Say we have a variable, x, as follows:
x <- seq(from = 10, to = 100, by = 10)
To iteratively print each element of x to the console, we do the following:

for(i in x){
print (i)
}

....................
e
O O i s O O, Oy
o))
o

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 45 / 54

Iterative processes in R)

The while loop

To do the same thing using the while loop:

Create an initial value for x
x <- 10
Construct the while loop
while(x <= 100){

print(x)

x <- x + 10

L L e L
e
O N 0 A A O, Oy
o))
o

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 46 / 54

Iterative processes in R =

The repeat loop

To do the same thing using the repeat loop:

create a starting variable
x <- 10
repeat loop construct
repeat {
if (x > 100) {
break
} else {
print (x)
x <- x + 10

....................
e e
O A N, e O, s O A, O
al
o

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 47 | 54

Kevin

Keenan (QUB)

R as statistical
package

SSCB: R101

September 16, 2013

48 / 54

Base R functions =

@ Base R is the standard distribution of R without additional packages
installed

@ It contains many useful functions for general statistical analysis

t.test() # student's t-test

chisq.test() # chi-square tests

glm() # general/generalised linear models
cor.test() # correlations

Im(Q) # Logistic regression

aov () # ANQVA

princomp () # PCA

kmeans () # Multivariate clustering

hclust () # Hierarchical clustering

@ In many cases there are multiple specialised function to do similar
analyses

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 49 / 54

Function help 'F\)\)

@ All functions should have help files associated with them to aid usage

7t.test
t.test help file

@ These help files can take some getting used to

@ Sometimes a web search will provide nice easy to understand worked
examples

http://www.statmethods.net/stats/ttest.html

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 50 / 54

./ttest.html
http://www.statmethods.net/stats/ttest.html

Extending R with packages =

@ In many fields of research, general statistical methods just don't cut it

@ R has a vibrant community of developers leading to the availability of
~5000 add-on packages

e CRAN
e Bioconductor

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 51 / 54

http://cran.r-project.org/
http://www.bioconductor.org/

Further reading

Crawley, M.J. (2013). The R Book. Wiley

Jones, O., Maillardet, R., & Robinson, A. (2009). Introduction to scientific
programming and simulation using R. CRC Press

Matloff, N. (2011). The art of R programming: a tour of statistical
software design. No Starch Press.

Spector, P. (2008). Data manipulation with R. Springer: useR series

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 52 / 54

Reproducibility

X

R version 3.0.1 (2013-05-16)
Platform: x86_64-w64-mingw32/x64 (64-bit)

attached base packages:

[1] stats graphics grDevices utils datasets methods base
other attached packages:

[1] knitr_1.4.1

loaded via a namespace (and not attached):

[1] digest_0.6.3 evaluate_0.4.7 formatR_0.9 highr_0.2.1
[6] stringr_0.6.2 tools_3.0.1

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 53 / 54

Kevin

Practical (FUN) time

Keenan (QUB) SSCB: R101 September 16, 2013

54 / 54

