
Introduction to R
a brief overview

Kevin Keenan
kkeenan02@qub.ac.uk

QUB

September 16, 2013

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 1 / 54

mailto:kkeenana02@qub.ac.uk

�Education is not the filling of a pale, but the

lighting of a fire.�

W.B. Yeats
(1865-1939)

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 2 / 54

Session structure

Lecture: 1hr

• What is R
• What can you do in R

• R as a programming language
• R as a statistical package

Computer practical: 2hrs (of fun)

• Installing R & RStudio

• Creating an R project
• Executing basic commands at the console
• Executing commands from an R script
• Reading and manipulating data
• Plotting features

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 3 / 54

What is R?

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 4 / 54

What is R?

R is a programming language and environment for statistical
computing and graphics

Language

• Highly customisable, flexible and powerful
• R was originally developed at the University of Auckland, NZ
• Open-source version of the S-PLUS statistical programming language

Environment

• Supports the integration of many processes into one single
work-flow/pipeline

• Extensible, with thousands of (free) packages available online

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 5 / 54

What is R?

It is used widely in academic and commercial sectors

It is one of the most popular analytics softwares used among
professional data analysts

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 6 / 54

What is R

pros

• Fully functional statistical programming environment
• Open source
• Cross platform: can be used on all popular operating systems
• Excellent graphics capabilities
• Thousands of (free) extension packages.*
• Large online community of users and developers
• Analysis frameworks can be saved in reproducible formats.
• High level programming language

cons

• Steep learning curve (Lots of help available)
• Minimal GUI capabilities
• Analysing large data sets can be troublesome (??bigmemory)
• Scripts cannot be compiled into stand alone .exe programs
• Interpreted language (slow compared to compiled C++ etc.)
• Thousands of (free) extension packages.*

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 7 / 54

What can you do
in R?

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 8 / 54

What can you do in R?

Simple arithmetic

5 * 5

[1] 25

Advanced calculator

Formula
In(Q; J = j) = −pj logepj +

∑K
i=1

pij

K
logepij

Code

In[j] <- (-(p[j])*log(p[j])) + sum((p[i, j]/k)*log(p[i, j]))

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 9 / 54

What can you do in R

Data analysis
• General statistical tests
(t.test, anova, glm, chisq.test, lm)

• Specialised statistical packages
(abc, BSgenome, cluster, igraph, shapefiles)

Data Visualisation
• Basic plots

−2 −1 0 1 2 3

−150
−100

−50
0

50
100
150

x

y

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 10 / 54

What R can do for you

Data visualisation
• Advanced plots

t1
t2
t3
t4
t5
t6
t7
t8
t9
t10
t11
t12
t13
t14
t15
t16
t17
t18
t19
t20
t21
t22
t23
t24
t25
t26
t27
t28
t29
t30
t31
t32
t33
t34
t35
t36
t37
t38
t39
t40
t41
t42
t43
t44
t45
t46
t47
t48
t49
t50
t51
t52
t53
t54
t55
t56
t57
t58
t59
t60
t61
t62
t63
t64
t65
t66
t67
t68
t69
t70
t71
t72
t73
t74
t75
t76
t77
t78
t79
t80
t81
t82
t83
t84
t85
t86
t87
t88
t89
t90
t91

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 11 / 54

What R can do for you

Having fun
• Read XKCD comic strips

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 12 / 54

What can you do in R

Designing web applications

Stocks app

Global Biodiversity Facility

Price trajectories

Gene Networks

Finance Showreel

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 13 / 54

http://glimmer.rstudio.com/winston/stocks/
http://glimmer.rstudio.com/ropensci/rgbif2/
http://glimmer.rstudio.com/timelyportfolio/d3-shiny-cpi/
http://glimmer.rstudio.com/qbrc/grn/
http://glimmer.rstudio.com/timelyportfolio/shiny-d3-showreel/

R as a programming
language

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 14 / 54

Choosing an IDE

At its most fundamental level, R can be used with only a text editor
and a command prompt/terminal

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 15 / 54

Choosing an IDE

More integrated options are available, the most comprehensive being
RStudio

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 16 / 54

The working directory

The working directory is the directory level at which R will evaluate
any calls to read or write data

If a file of interest in present in the working directory, this file can be
accessed by simply passing its name to a given function

If the working directory is not set, either an absolute path, or a path
relative to the current working directory must be given

set the working directory
setwd("~/R_stuff")
get the current working directory
getwd()
[1] "~/R_stuff"

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 17 / 54

Finding help

R has a built in help system

Standard syntax
help(FUN) # FUN = some function (e.g. 'sum')
fuzzy search
help.search(pattern)
or short-hand syntax
?FUN
??FUN
example
?read.table

read.table help file

The web is your friend

| UCLA R resources page | Search engine tailored to R | stackoverflow | Twitter

#rstats | Comprehensive R Archive Network | R bloggers aggrigator site | The R

podcast | The R Journal (peer reviewed) | Quick R | R programming wikibook |

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 18 / 54

./read.table.html
http://www.ats.ucla.edu/stat/r/
http://www.rseek.org/
http://stackoverflow.com/questions/tagged/r
https://twitter.com/
https://twitter.com/
http://cran.r-project.org/
http://www.r-bloggers.com/
http://www.r-podcast.org/r-resources/
http://www.r-podcast.org/r-resources/
http://journal.r-project.org/index.html
http://www.statmethods.net/
http://en.wikibooks.org/wiki/R_Programming

Finding help

Many excellent books

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 19 / 54

Basic operations

Using R as a simple calculator

The R console is interactive
5 + 5

[1] 10

Using R as a (less) simple calculator

(1 + 1/10%%3)^100

[1] 1.268e+30

Testing logicals

(1 + 1/10%%3)^100 == 2^100

[1] TRUE

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 20 / 54

Basic operations

Assigning values to variables

Using assignment operator '<-' ('=' in other languages)
x <- (1 + 1/10%%3)^100
y <- 2^100
x == y

[1] TRUE

Common mathematical operators

^ or ** # power: 2^10 = 1024 = 2**10
* and / # Multiplication and division
+ and - # Addition and subtraction
%/% # Integer division: 10%/%3 = 3
%*% # Conformable matrix multiplication: x %*% y
%% # Modulo: 10%%3 = 1
() # Parentheses: specify operation order

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 21 / 54

Basic operations

Common built in mathematical functions

sin(), cos(), tan(), exp(), log(), log10(),
sqrt(), sum(), prod(), floor(), ceiling(),
round(), abs(), acos(), atan(), factorial(), ...

Examples

find the product of a range of numbers
prod(1,2,3,4,5)

[1] 120

prod(1:5) == factorial(5)

[1] TRUE

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 22 / 54

Data types in R

Values in R can be said to have a class or mode

typeof(5.2) # numeric class: double

[1] "double"

typeof("ABC") # character class: is.character()

[1] "character"

typeof(as.integer(5.2)) # numeric class: integer

[1] "integer"

typeof(TRUE) # Boolean: is.logical()

[1] "logical"

is.na(NA) # Missing data

[1] TRUE

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 23 / 54

Data structures

Virtually everything in R is an object/variable

• Facilitates Object-Oriented Programming

Simple data structure (all vectors with different dimensionality!)

matrix() All elements must be the same mode
vector() All elements must be the same mode
array() All elements must be the same mode

Sophisticated data structures (Data analysis and manipulation!)

factor() Special vector for categorical data mode
list() Can have elements of different mode
data.frame() Can have elements of different mode

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 24 / 54

Data structures: Examples

Create a vector

x <- c(11, 12, 13, 14, 15) # create a numeric vector
x # print x

[1] 11 12 13 14 15

x <- 11:15 # using colon expansion

What about strings?

y <- c("Kevin", "Keenan") # create a character vector
y # print y

[1] "Kevin" "Keenan"

What about mixtures? (Beware coercion!!!)

z <- c("Kevin", "Keenan", 26) # create mixed variable
z

[1] "Kevin" "Keenan" "26"

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 25 / 54

Data structures: Examples

For variables of different mode, we can use a list

z <- list(first = "Kevin", second = "Keenan",
age = 26)

z

$first
[1] "Kevin"

$second
[1] "Keenan"

$age
[1] 26

Make sure the elements have maintained their modes

is.character(z$first)

[1] TRUE

is.numeric(z$age)

[1] TRUE

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 26 / 54

Data structures: Examples

A matrix is a vector with two dimensions, while an array is a
matrix with more than two dimensions.

x_vect <- seq(from = 0.1, to = 10, by = 0.1)
length(x_vect)

[1] 100

x_mat <- matrix(x_vect, ncol = 10)
x_mat

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0.1 1.1 2.1 3.1 4.1 5.1 6.1 7.1 8.1 9.1
[2,] 0.2 1.2 2.2 3.2 4.2 5.2 6.2 7.2 8.2 9.2
[3,] 0.3 1.3 2.3 3.3 4.3 5.3 6.3 7.3 8.3 9.3
[4,] 0.4 1.4 2.4 3.4 4.4 5.4 6.4 7.4 8.4 9.4
[5,] 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5
[6,] 0.6 1.6 2.6 3.6 4.6 5.6 6.6 7.6 8.6 9.6
[7,] 0.7 1.7 2.7 3.7 4.7 5.7 6.7 7.7 8.7 9.7
[8,] 0.8 1.8 2.8 3.8 4.8 5.8 6.8 7.8 8.8 9.8
[9,] 0.9 1.9 2.9 3.9 4.9 5.9 6.9 7.9 8.9 9.9
[10,] 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 27 / 54

Indexing/sub-setting

Unlike languages such as python or perl, R indexing begins at 1

x[1] # print the first element of x

[1] 11

x[c(1, 4, 5)] # print a range of elements

[1] 11 14 15

x[-3] # print all but the 3rd element

[1] 11 12 14 15

x[1] + x[2] # Add the first and second elements

[1] 23

y <- x[-4] # create a new vector
y

[1] 11 12 13 15

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 28 / 54

Indexing/sub-setting

Because a matrix is a vector with two dimensions, each element has
a pair of index 'coordinates'

The general index format is as below:

matrix[row, column]

If we wanted to extract the 5th element of the 3rd column, we would
write:

x_mat[5, 3]

[1] 2.5

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 29 / 54

Indexing/sub-setting

list indexing can be done through brackets ([[]]) or the '$' extract
operator

Create a list for the number of offspring per pet
offspring <- list(dog = c(2, 5, 3, 8), cat = c(12, 6, 7, 4),

snake = c(43, 35, 23, 10))
offspring

$dog
[1] 2 5 3 8

$cat
[1] 12 6 7 4

$snake
[1] 43 35 23 10

offspring$cat == offspring[[2]] # Compare indexing methods

[1] TRUE TRUE TRUE TRUE

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 30 / 54

Why lists?

The generality of the definition of a list makes it an extremely
flexible data structure for statistical analyses

• A generic container for other objects (e.g. matrices, vectors,
data.frames)

Create a complex list
myList <- list(x = matrix(c(offspring$dog, offspring$cat,

offspring$snake), ncol = 3),
y = 10,
z = offspring)

myList$x # print element 'x' of the list

[,1] [,2] [,3]
[1,] 2 12 43
[2,] 5 6 35
[3,] 3 7 23
[4,] 8 4 10

myListzdog == myList$x[, 1]

[1] TRUE TRUE TRUE TRUE

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 31 / 54

Why lists?

Extracting multiple items from a list can be done in two ways
Create a complex list
myList[c("x", "y")] # by name

$x
[,1] [,2] [,3]

[1,] 2 12 43
[2,] 5 6 35
[3,] 3 7 23
[4,] 8 4 10

$y
[1] 10

myList[1:2] # by index

$x
[,1] [,2] [,3]

[1,] 2 12 43
[2,] 5 6 35
[3,] 3 7 23
[4,] 8 4 10

$y
[1] 10

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 32 / 54

The data.frame: a special list

The data.frame is the most used data structure in R for statistical
analyses

It is essentially a list with two dimensions

Create a complex list
myDF <- data.frame(pet = c(rep("dog", 4), rep("cat", 4),

rep("snake", 4)),
offspring = unlist(offspring))

myDF

pet offspring
dog1 dog 2
dog2 dog 5
dog3 dog 3
dog4 dog 8
cat1 cat 12
cat2 cat 6
cat3 cat 7
cat4 cat 4
snake1 snake 43
snake2 snake 35
snake3 snake 23
snake4 snake 10

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 33 / 54

The data.frame: a special list

The pet variable in myDF is a factor

• A special vector for categorical data

is.factor(myDF$pet) # check if pet is a factor

[1] TRUE

levels(myDF$pet) # check the levels (categories) of pet

[1] "cat" "dog" "snake"

tapply(myDF$offspring, myDF$pet, FUN = mean)

cat dog snake
7.25 4.50 27.75

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 34 / 54

The data.frame: a special list

Data frames containing factors make plotting categorical data
simple

plot(myDF, col = rainbow(3)) # boxplot of offspring per pet

cat dog snake

10
20

30
40

pet

of
fs

pr
in

g

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 35 / 54

Real data in R

To read data from a file into R, there are a range of simple functions

read.csv() # read a comma seperated file
read.table() # read a file in table format
read.delim() # read a file with TAB delimited fields
read.fwf() # read a fixed width format table
read.DIF() # read data interchange format file
scan() # C level: foundation for most other read functions
readLines() # Read individual lines from a file

The most commonly used function is read.table

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 36 / 54

Real data in R

To read a spreadsheet table, it is generally sensible to convert it to a
text file or .csv file

• This avoids any problems with multi-sheet workbooks and odd text
encoding

my_data <- read.table("mydata.txt", header = TRUE)
print(my_data) # look at the table in R

Name Height Weight BMI
1 Steve 1.78 75.2 23.73
2 Emily 1.56 120.4 49.47
3 George 2.11 91.3 20.51
4 Nicola 1.65 45.6 16.75
5 Pierre 1.95 86.3 22.70

is.data.frame(my_data)

[1] TRUE

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 37 / 54

Real data in R

Some simple manipulations of my_data

str(my_data) # check the structure of my_data

'data.frame': 5 obs. of 4 variables:
$ Name : Factor w/ 5 levels "Emily","George",..: 5 1 2 3 4
$ Height: num 1.78 1.56 2.11 1.65 1.95
$ Weight: num 75.2 120.4 91.3 45.6 86.3
$ BMI : num 23.7 49.5 20.5 16.8 22.7

names(my_data) # get variable names

[1] "Name" "Height" "Weight" "BMI"

names(my_data) <- c("nms", "hgt", "wgt", "bmi") # change names
names(my_data)

[1] "nms" "hgt" "wgt" "bmi"

mean(my_data$hgt) # get the mean of heights

[1] 1.81

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 38 / 54

Missing data

Imagine that we didn't have any height information for Emily

msng_data <- read.table("mydata_missing.txt", header = TRUE)
print(msng_data)

Name Height Weight BMI
1 Steve 1.78 75.2 23.73
2 Emily -9999.00 120.4 -9999.00
3 George 2.11 91.3 20.51
4 Nicola 1.65 45.6 16.75
5 Pierre 1.95 86.3 22.70

mean(msng_data$Height) # R is not treating -9999 as missing

[1] -1998

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 39 / 54

Missing data

The special value NA is reserved for missing data in R

• We need to replace our missing values (-9999) with NA's

msng_data[msng_data == -9999] <- NA # replace missing data
print(msng_data)

Name Height Weight BMI
1 Steve 1.78 75.2 23.73
2 Emily NA 120.4 NA
3 George 2.11 91.3 20.51
4 Nicola 1.65 45.6 16.75
5 Pierre 1.95 86.3 22.70

mean(msng_data$Height, na.rm = TRUE) # calculate the mean

[1] 1.873

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 40 / 54

User defined functions

User defined functions in R are similar to modules, subroutines or
procedures in other languages

They take the general form below:

funName <- function(arg1, arg2, ...){
expression1
expression2
...
return(output)

}

A simple example: calculate the square of a number

Define the function
sqrFun <- function(x){
x_sqr <- x^2
return(x_sqr)

}
sqrFun(10) # test the function

[1] 100

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 41 / 54

User defined functions

A more advanced function using conditional control flow

• Allow for user defined operation on a vector (e.g. sum or product)

define the new complex function
newFun <- function(data, operation = "sum"){
if(operation == "sum"){
output <- sum(data)

} else if(operation == "product"){
output <- prod(data)

}
return(output)

}
newFun(data = offspring$dog, operation = "sum")

[1] 18

newFun(data = offspring$dog, operation = "product")

[1] 240

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 42 / 54

User defined functions

Test the function

sum_dog <- newFun(data = offspring$dog, operation = "sum")
prod_dog <- newFun(data = offspring$dog, operation = "product")
sum_dog # print sum results

[1] 18

prod_dog # print product results

[1] 240

sum_dog == sum(offspring$dog) # compare function sums

[1] TRUE

prod_dog == prod(offspring$dog) # compare function products

[1] TRUE

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 43 / 54

Iterative processes in R

One of the most useful features of a programming language is the
ability to do many things, multiple times, quickly.

R allows us to achieve this with the help of 'loops'

There are three main loop structures in R.
I for loop
I while loop
I repeat loop

?`for`
?`while`
?`repeat`

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 44 / 54

Iterative processes in R

The for loop

Say we have a variable, x, as follows:

x <- seq(from = 10, to = 100, by = 10)

To iteratively print each element of x to the console, we do the following:

for(i in x){
print(i)

}

[1] 10
[1] 20
[1] 30
[1] 40
[1] 50
[1] 60
[1] 70
[1] 80
[1] 90
[1] 100

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 45 / 54

Iterative processes in R

The while loop

To do the same thing using the while loop:

Create an initial value for x
x <- 10
Construct the while loop
while(x <= 100){
print(x)
x <- x + 10

}

[1] 10
[1] 20
[1] 30
[1] 40
[1] 50
[1] 60
[1] 70
[1] 80
[1] 90
[1] 100

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 46 / 54

Iterative processes in R

The repeat loop

To do the same thing using the repeat loop:

create a starting variable
x <- 10
repeat loop construct
repeat {

if (x > 100) {
break

} else {
print(x)
x <- x + 10

}
}

[1] 10
[1] 20
[1] 30
[1] 40
[1] 50
[1] 60
[1] 70
[1] 80
[1] 90
[1] 100

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 47 / 54

R as statistical
package

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 48 / 54

Base R functions

Base R is the standard distribution of R without additional packages
installed

It contains many useful functions for general statistical analysis

t.test() # student's t-test
chisq.test() # chi-square tests
glm() # general/generalised linear models
cor.test() # correlations
lm() # Logistic regression
aov() # ANOVA
princomp() # PCA
kmeans() # Multivariate clustering
hclust() # Hierarchical clustering

In many cases there are multiple specialised function to do similar
analyses

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 49 / 54

Function help

All functions should have help files associated with them to aid usage

?t.test

t.test help file

These help files can take some getting used to

Sometimes a web search will provide nice easy to understand worked
examples

http://www.statmethods.net/stats/ttest.html

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 50 / 54

./ttest.html
http://www.statmethods.net/stats/ttest.html

Extending R with packages

In many fields of research, general statistical methods just don't cut it

R has a vibrant community of developers leading to the availability of
≈5000 add-on packages

• CRAN
• Bioconductor

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 51 / 54

http://cran.r-project.org/
http://www.bioconductor.org/

Further reading

Crawley, M.J. (2013). The R Book. Wiley

Jones, O., Maillardet, R., & Robinson, A. (2009). Introduction to scientific
programming and simulation using R. CRC Press

Matloff, N. (2011). The art of R programming: a tour of statistical
software design. No Starch Press.

Spector, P. (2008). Data manipulation with R. Springer: useR series

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 52 / 54

Reproducibility

R version 3.0.1 (2013-05-16)
Platform: x86_64-w64-mingw32/x64 (64-bit)

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] knitr_1.4.1

loaded via a namespace (and not attached):
[1] digest_0.6.3 evaluate_0.4.7 formatR_0.9 highr_0.2.1
[5] stringr_0.6.2 tools_3.0.1

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 53 / 54

Practical (FUN) time

Kevin Keenan (QUB) SSCB: R101 September 16, 2013 54 / 54

